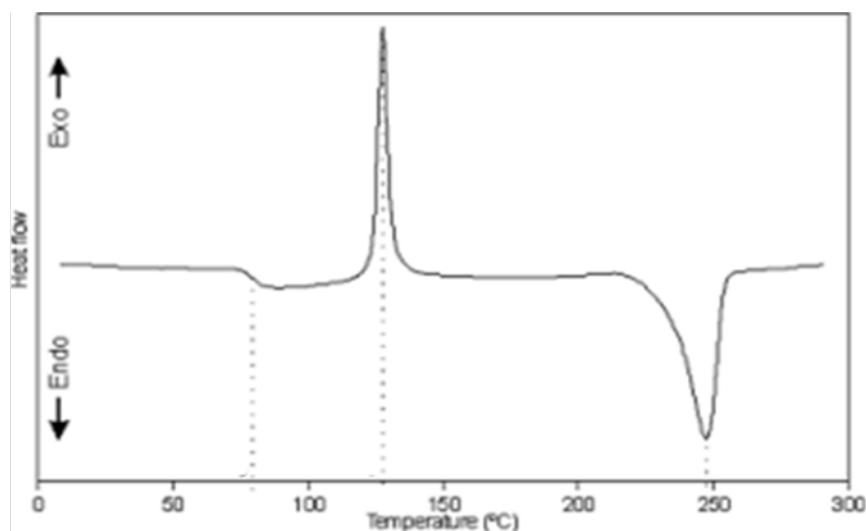


Exercises 4: Amorphous State and Glass Transition


4.1. A new polymer is reported to soften at 60°C. Describe a very simple experiment to determine whether this softening is a glass transition or a melting point.

4.2. Explain the following

- (a) by dipping into liquid nitrogen, an adhesive tape loses its stickiness.
- (b) A hollow rubber ball when cooled in liquid nitrogen and thrown hard against the wall breaks into pieces.

4.3: A DSC thermogram of a semicrystalline poly(ethylene terephthalate) was recorded at a heating rate of 1°C/min.

a.) Identify the glass transition temperature, the crystallization temperature, and the melting temperature in the thermogram below.

b.) What changes in the thermogram would you expect

- if the sample was cooled down rapidly ?

c.) - if the heating rate was changed to 10°C/min.

4.4: What is the effect on T_g if we increase the rate of sampling by a factor of 10?

4.5: Suppose a polymer has a $T_g = 0^\circ\text{C}$. At 40°C , it has a melt viscosity of 2.5×10^5 poises (P) [= 2.5×10^4 Pa s]. What will its viscosity be at 50°C ?

4.6: Di-n-ethylhexyl phthalate (DEHP) and related compounds are commonly used to plasticize poly(vinyl chloride) (PVC) to produce pliable material generically referred to as "vinyl". A good plasticizer is miscible with the polymer in question, does not crystallize itself, and has a very low vapor pressure. What fraction of DEHP should be added to PVC to bring T_g down below room temperature, say 293K, given that T_g for DEHP is about -86°C and for PVC 90°C respectively?

4.7: Styrene ($T_g = 95^\circ\text{C}$ at $1^\circ\text{C}.\text{min}^{-1}$) is copolymerized with an equimolar amount of propylene ($T_g = -10^\circ\text{C}$ at $1^\circ\text{C}.\text{min}^{-1}$) to form a statistical copolymer (both monomers were fully incorporated). What is the T_g of this copolymer? Assume that the thermal expansion coefficients and densities of both polymers are equivalent.